

Defense Waste Processing Facility Melter Bubblers

We do the right thing.

Presentation to:

Citizens Advisory Board, Waste Management Committee

8/24/10
Karthik Subramanian
Chief Technology Officer
Savannah River Remediation

SRR-MS-2010-00155

Acknowledgements

- DOE-SR
- DWPF Facility Engineering
- DWPF Operations
- EnergySolutions/Vitreous State Laboratory
- SRNL

Outline

- Liquid Waste System
- DWPF Overview
- Bubblers Implementation
 - Controlled, systematic approach
 - Reliably install and operate bubblers
 - Maintain glass quality requirements
 - Enhance sludge disposition rate
- Specific Questions
 - Melter impacts
 - Cold-cap coverage: volatiles carryover

SRS Liquid Waste System

DWPF Process

Melter

We do the right thing.

*Currently ratelimiting step at DWPF

Pour Spout

Current Glass Pump

We do the right thing.

Glass Pump
 Provides ~6%
 Increase In
 Canister
 Productivity

Melter Bubblers Implementation

- Implement bubblers in existing Glass Melter to increase melt rate/waste throughput
 - Maximize number
 - Symmetry
 - Location with respect to feed point
 - Ease of remote access
 - Minimize impact on remote jumpers

Melter Configuration

Bubbler Assemblies

Top View of Melter From South Wall

Bubblers Implementation

- Installation and operation of the bubbler systems following a safe, systematic, and controlled approach
- Testing program is being completed to determine any safety and operational impacts to the system
- Bubbler installation on track to September 2010
 - Detailed controlled startup
 - Learning process as with all enhancements/modifications to existing facilities
- Same glass quality requirements met
- Enhanced the production capacity to accelerate the sludge disposition rate

Knowledge of Bubblers

We do the right thing.

 Knowledge of test programs, and previous melters operated under similar conditions, were used to develop the strategy for implementation at **DWPF**

Parameter	DWPF	M-Area Melter	LAW Pilot Melter
Geometry	Cylinder	Rectangular	Rectangular
Melt surface area, m ²	2.6	5.0	3.3
Glass contact refractory type	K3	K3	K3
Glass contact refractory thickness, in	12	10	12
Number of bubblers	4 assemblies	10 assemblies	8 assemblies
Closest distance from bubbler injection point to refractory wall, in	~5	~4	~2
Closest distance from the bubbler injection point to floor refractory, in	>2	2	2
Total glass produced, lb	2,963,000*	2,175,000	7,762,000

Key Parameters in DWPF Bubblers

We do the right thing.

- Cold cap is critical to the operation of the DWPF melter and will be maintained with bubbler operations
 - Minimize carryover of volatile species (e.g. halides)
 - Off-gas system life not significantly impacted
 - Minimal changes in radionuclide carryover (e.g. Tc)

COLD-CAP BUILD-UP DURING NORMAL OPERATIONS

DM1200 Experimental Melter at VSL-CUA

Summary

- Bubbler implementation strategy is a comprehensive plan to address specific technical issues and integration within the plant
 - Sludge batch planning
 - Transfer control
 - Safety analyses
 - Melter impacts
 - Glass quality
- Controlled strategy will be used to install and operate bubblers at the DWPF facility
- It is recognized that, as with any modification, there is a start-up phase and continuous improvement that will take place as the bubblers are operated and more knowledge is gained

Backup

Off-Gas System

